电力变压器的局放试验
利用罗果夫斯基线圈从变压器中性点处测取信号,测量的信号频率可以达到3万千赫兹,大大提高了局放的测量频率,同时测试系统安装方便,检测设备不改变电力系统的运行方式。但对于三相电力变压器,得到的信号是三相局放信号的总和,无法进行分辨,且信号易受外界干扰。
利用罗果夫斯基线圈从变压器中性点处测取信号,测量的信号频率可以达到3万千赫兹,大大提高了局放的测量频率,同时测试系统安装方便,检测设备不改变电力系统的运行方式。但对于三相电力变压器,得到的信号是三相局放信号的总和,无法进行分辨,且信号易受外界干扰。
本文讨论了一类多目标广义凸分式规划的对偶定理,其结果是对张吉军的对偶定理的推广。 等分式动力卡盘广泛使用于数控车床、自动化专机上,应用于汽车、内燃机、发动机、冷冻机阀门、暖通等行业。
原理罗果夫斯基线圈实质是一种原边为单匝线圈、副边为多匝线圈的电流互感器,这种测量线圈本身与电流回路只是通过电磁场耦合,因此与主回路有良好的电气绝缘,再加上这种线圈结构简单、易于加工和安装,工作性能可靠,频带较宽,自身的上升时间可以做得很小,所以。
射频检测法。利用罗果夫斯基线圈从变压器中性点处测取信号,测量的信号频率可以达到3万千赫兹,大大提高了局放的测量频率,同时测试系统安装方便,检测设备不改变电力系统的运行方式。但对于三相电力变压器,得到的信号是三相局放信号的总和,无法进行分辨,且信号易受外界干扰。
用分式造句(大约30个左右)
本文讨论了一类多目标广义凸分式规划的对偶定理,其结果是对张吉军的对偶定理的推广。 2 等分式动力卡盘广泛使用于数控车床、自动化专机上,应用于汽车、内燃机、发动机、冷冻机阀门、暖通等行业。
刚体流线削减阻力,增长焦点动力与游进中的有张有驰也非针尖对麦芒吧? 仿真结果表明,非线性变结构控制可以有效地调节直流线路的传输功率,保证交直流系统的稳定性。 这种方法不需要计算出无粘流线的细节,并适用于不同外形的后掠翼。
用“分式”造句 第1组 本文讨论了一类多目标广义凸分式规划的对偶定理,其结果是对张吉军的对偶定理的推广。 等分式动力卡盘广泛使用于数控车床、自动化专机上,应用于汽车、内燃机、发动机、冷冻机阀门、暖通等行业。
在DCL1000钳形电流表中,ACA代表交流电流的功能。这款轻量级的AC1000A检测钳形表使用了罗果夫斯基线圈,具有非常轻量的空芯。它还具备易于操作的大锁定键和易于阅读的大型液晶显示屏。除了能够检测AC1000A之外,还具备DCV、ACV的检测功能。
用罗果夫斯基线圈测量各支路电流,用自制磁场测量线圈测量空间磁场,经校核测量系统线性误差<5%。将相应的双指数脉冲电流波形参数代入仿真程序得到计算值。图2比较第二层中垂直支路分流系数(支路电流与总注入电流的峰值之比)的测量值与计算值。实测和计算值间差异<10%。
电力变压器的局放试验中,干扰措施主要有哪几类?分别用哪些办法能够避免这些干扰对试验造成的影响?
建筑物的导电构架可看成互相连接的分支导体构成的框架,见图1。当建筑物尺寸远小于雷电流波的等效波长时,室内电磁场可看成准静态场。在导电构架模型中将各分支导体分段,每段用集中参数π形等效电路表示。建立导电构架等效电路模型后,可用电路法计算构架中的电流分布,再用麦克斯韦方程和比奥—萨法特定律求解建筑物内的磁场分布[4]。据此编写了计算室内磁场分布的数值仿真软件。?图1所示的导电构架模型用直径1cm的圆钢构成3×4×3的导体网格,每段长0.6m。施加7.8/16μs峰值为1.7kA的试验电流。用罗果夫斯基线圈测量各支路电流,用自制磁场测量线圈测量空间磁场,经校核测量系统线性误差2μs时会因波头陡度不足而低估室内可能出现的磁场水平。?
常规的电力变压器局部放电检测方法有脉冲电流法、DGA法、超声波法、RIV法、光测法、射频检测法和化学方法等。
常规的局放检测方法
脉冲电流法。它是通过检测阻抗接入到测量回路中来检测。检测变压器套管末屏接地线、外壳接地线、中性点接地线、铁芯接地线以及绕组中由于局放引起的脉冲电流,获得视在放电量。脉冲电流法是研究最早、应用最广泛的一种检测方法,IEC-60270为IEC于2000年正式公布的局放测量标准。脉冲电流法通常被用于变压器出厂时的型式试验以及其他离线测试中,其离线测量灵敏度高。脉冲电流法的问题在于以下几方面:其抗干扰能力差,无法有效应用于现场的在线监测;对于变压器类具有绕组结构的设备在标定时产生很大的误差;由于检测阻抗和放大器对测量的灵敏度、准确度、分辨率以及动态范围等都有影响,因此当试样的电容量较大时,受耦合阻抗的限制,测试仪器的测量灵敏度受到一定限制;测量频率低、频带窄,包含的信息量少。
DGA法。DGA法是通过检测变压器油分解产生的各种气体的组成和浓度来确定故障(局放、过热等)状态。该方法目前已广泛应用于变压器的在线故障诊断中,并且建立起模式识别系统可实现故障的自动识别,是当前在变压器局放检测领域非常有效的方法。但是DGA法具有两个缺点:油气分析是一个长期的监测过程,因而无法发现突发性故障;该方法无法进行故障定位。
超声波法。超声波法是通过检测变压器局放产生的超声波信号来测量局放的大小和位置。超声传感器的频带约为70~150千赫兹(或300千赫兹),以避开铁芯的铁磁噪声和变压器的机械振动噪声。由于超声波法受电气干扰小以及可以在线测量和定位,因而人们对超声波法的研究较深入。但目前该方法存在着很大的问题:目前的超声传感器灵敏度很低,无法在现场有效地测到信号;传感器的抗电磁干扰能力较差。因此,超声检测主要用于定性地判断局放信号的有无,以及结合脉冲电流法或直接利用超声信号对局放源进行物理定位。在电力变压器的离线和在线检测中,它是主要的辅助测量手段。
RIV法。局部放电会产生无线电干扰的现象很早就被人们所认识。例如人们常采用无线电电压干扰仪来检测由于局放对无线电通讯和无线电控制的干扰,并已制定了测量方法的标准。用RIV表来检测局放的测量线路与脉冲电流直测法的测量电路相似。此外,还可以利用一个接收线圈来接收由于局放而发出的电磁波,对于不同测试对象和不同的环境条件,选频放大器可以选择不同的中心频率(从几万赫兹到几十万赫兹),以获得最大的信噪比。这种方法已被用于检查电机线棒和没有屏蔽层的长电缆的局放部位。
光测法。光测法利用局放产生的光辐射进行检测。在变压器油中,各种放电发出的光波长不同,研究表明通常在500~700mm之间。在实验室利用光测法来分析局放特征及绝缘劣化等方面已经取得了很大进展,但是由于光测法设备复杂昂贵、灵敏度低,且需要被检测物质对光是透明的,因而在实际中无法应用。
射频检测法。利用罗果夫斯基线圈从变压器中性点处测取信号,测量的信号频率可以达到3万千赫兹,大大提高了局放的测量频率,同时测试系统安装方便,检测设备不改变电力系统的运行方式。但对于三相电力变压器,得到的信号是三相局放信号的总和,无法进行分辨,且信号易受外界干扰。随着数字滤波技术的发展,射频检测法在局放在线检测中得到了较广泛的应用。
超高频方法在局放检测中的应用
华北电力大学自2002年开始,将近年来国际上流行的超高频技术应用于GIS、变压器、电机和电缆等的局放检测研究工作。截至目前为止,研究工作取得了很大进展,完成了超高频法用于变压器局放检测的可行性验证,研制了一套自动化超高频局放检测系统,可以通过程控的方式控制信号采集和数据存储。设计了模拟变压器内部局放的各种实验室模型,通过相位统计分布的方式和频谱的方式进行了模式识别的研究,取得了很好的效果。以实验室检测系统为基础设计了一套基于现场的超高频局放检测系统,并成功地于2003年2月23日在河南某变电站一台正在运行的型号为SFPSZ9-220千伏/120000千伏安的主变进行了安装与试验,实现了国内用于实际在线安装测试的首次试验。后来又在该变压器吊罩检查期间,安装了基于超高频检波信号的固定式监测系统长期跟踪其局放活动。结合实验室的研究成果,设计了一套基于工控机的UHF局放在线监测装置,实现了在线连续采集数据、相位统计分析和超高频信号随时间变化的历史趋势分析功能。
高压设备局放检测的发展方向
目前,超高频方法的研究也面临着一些问题,由于测量机理与脉冲电流法不同,因此无法进行视在放电量的标定,而目前大多数工程人员已经习惯于通过视在放电量来反映局放的严重程度,IEC规定有关局放的变压器产品出厂标准中,其指标也是通过局放量的阈值来规定的。目前的研究表明,即使在局放源到传感器之间的传播路径不变的情况下,脉冲电流法的视在局放量与超高频方法所测得的脉冲信号幅值之间也没有确定的对应关系,这就更加大了应用该方法进行局放定量的难度;此外,由于变压器内部绝缘结构的复杂性,局放产生的电磁波在内部的传播将存在大量的散射、折反射以及衰减,因而传播特性研究和局放源定位工作将注定是难度很大而且充满挑战的。
随着科技的发展,特别是信号分析技术如神经网络、指纹分析、专家系统、模糊诊断和分形等都越来越多地应用到变压器局放检测中,对通过脉冲电流法按照IEC270标准测量得到数据,进行模式识别和绝缘寿命评估,推动了局放检测技术的发展。超高频检测方法从一开始就是从数字化技术起步的,通过将成功的传统方法移植到超高频检测之中,实现局放的连续在线监测和自动识别的研究正在取得快速的进展,上述超高频法存在的问题是目前很多相关研究单位需要解决的课题。笔者认为,任何一种方法都有一定的应用范围,有些问题它可以解决,有一些则不能解决。当前通信技术的发展使人们充分认识到,在线监测是个跨学科、综合性的研究领域,多种方法相结合,综合运行目前各种技术和知识,构建统一的、综合的在线监测平台,将是未来局放在线监测的发展方向。